123 research outputs found

    From Writer to Teacher: The Gradual Release of Responsibility in an Early Childhood Education Writing Course for Pre-Service Teachers

    Get PDF
    Teaching students to become confident, capable writers is imperative in today’s world. Growing attention has been paid to the amount and kinds of writing students are experiencing in schools with an urgent plea for more time and attention given to writing instruction (Nagin, 2003; National Commission on Writing, 2003). Yet, few teachers feel well prepared to teach writing. In this special issue on writing methods courses, we discuss the evolution of our writing methods course for early childhood preservice teachers (PK-5). Specifically, we examine the current pedagogical practices within the course to support preservice teachers’ experiential learning. This piece examines how a gradual release of responsibility model with multiple units of study supports preservice teachers as writers and as future teachers of writers

    Calculating with light using a chip-scale all-optical abacus

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Machines that simultaneously process and store multistate data at one and the same location can provide a new class of fast, powerful and efficient general-purpose computers. We demonstrate the central element of an all-optical calculator, a photonic abacus, which provides multistate compute-and-store operation by integrating functional phase-change materials with nanophotonic chips. With picosecond optical pulses we perform the fundamental arithmetic operations of addition, subtraction, multiplication, and division, including a carryover into multiple cells. This basic processing unit is embedded into a scalable phase-change photonic network and addressed optically through a two-pulse random access scheme. Our framework provides first steps towards light-based non-von Neumann arithmetic.The authors acknowledge support by Deutsche Forschungsgemeinschaft (DFG) grants PE 1832/2-1 and EPSRC grant EP/J018783/1. M.S. acknowledges support from the Karlsruhe School of Optics and Photonics (KSOP) and the Stiftung der Deutschen Wirtschaft (sdw). C.R. is grateful to JEOL UK and the Clarendon Fund for funding his graduate studies. H.B. acknowledges support from the John Fell Fund and the EPSRC (EP/J00541X/2 and EP/J018694/1). The authors also acknowledge support from the DFG and the State of Baden-Württemberg through the DFG-Center for Functional Nanostructures (CFN). The authors thank S. Diewald for assistance with device fabrication

    Waferscale nanophotonic circuits made from diamond-on-insulator substrates

    Get PDF

    Reconfigurable Nanophotonic Cavities with Nonvolatile Response

    Get PDF
     This is the author accepted manuscript. The final version is available from American Chemical Society via the DOI in this recordThe use of phase-change materials on waveguide photonics is presently being purported for a range of applications from on-chip photonic data storage to new computing paradigms. Photonic integrated circuits in combination with phase-change materials provide on-chip control handles, featuring nonvolatility and operation speeds down to the nano- and picosecond regime. Besides ultrafast control, efficient operation of nonvolatile elements is crucial and requires compact photonic designs. Here we embed phase-change materials in photonic crystal cavities to realize tunable nanophotonic devices which can be reconfigured on demand. The devices exploit strong light matter interactions between the resonant modes of the cavity and the evanescently coupled phase-change material cell. This results in an increased transmission contrast and a power reduction of 520% over conventional phase-change nanophotonic devices when reversibly switched with optical pulses. Such designs can thus open up new areas of reconfigurable nanophotonics without sacrificing the speeds or functionality for applications in optical memory cells, optical switches, and tunable wavelength filters.Engineering and Physical Sciences Research Council (EPSRC)European Research CouncilEuropean Union Horizon 202

    Coupling thermal atomic vapor to an integrated ring resonator

    Get PDF
    Strongly interacting atom–cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum networks, nanophotonic resonators are promising candidates because they can be scalably fabricated and interconnected with waveguides and optical fibers. By integrating arrays of ring resonators into a vapor cell we show that thermal rubidium atoms above room temperature can be coupled to photonic cavities as building blocks for chip-scale hybrid circuits. Although strong coupling is not yet achieved in this first realization, our approach provides a key step towards miniaturization and scalability of atom–cavity systems

    On-chip waveguide coupling of a layered semiconductor single photon source

    Get PDF
    Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si3N4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si3N4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.
    • …
    corecore